

Common-Controls
Security

Version 1.0.2 - Stand: 24. December 2003

Permissions and Security

Published by:
SCC Informationssysteme GmbH
64367 Mühltal

Tel: +49 (0) 6151 / 13 6 31 0
Internet www.scc-gmbh.com

Product Site
http://www.common-controls.com

Copyright © 2000 - 2003 SCC Informationssysteme GmbH.
All rights reserved. Published 2003

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way
without the prior agreement and written permission of SCC Informationssysteme GmbH.

Sun, Sun Mircosystems, the Sun Logo, Java, JavaServer Pages are registered trademarks of Sun
Microsystems Inc in the U.S.A. and other Countries.

Microsoft, Microsoft Windows or other Microsoft Produkte are a registered trademark of Microsoft
Corporation in the U.S.A. and other Countries.

Netscape, Netscape Navigator is a registered trademark of Netscape Communications Corp in the U.S.A.
and other Countries.

All other product names, marks, logos, and symbols may be trademarks or registered trademarks of their
respective owners.

Security ii

http://www.common-controls.com/

Permissions and Security

Table of content
1 Introduction...1

2 Authorization types..2

3 Implementation of an Authorization System ...3
3.1 Providing the Principal Object ..3
3.2 Linking to an Authorization System..4
3.3 Registration of the Principal Object..5
3.4 Configuration of Authorizations ..6
3.5 Securing the Action classes in the struts-config.xml..7

4 Examples...9

5 Support..10

6 Glossar ..11

Security iii

Permissions and Security

1 Introduction
This document describes how authorizations can be granted at the level of control elements, in order to
restrict program functions to certain groups of users only. For this purpose, a control element has a
permission-attribute, which allows assignment of the necessary authorizations (see Figure 1). The
authorizations can then be role-based or function-based. The various authorization types are shown in
Section 2.

The following example shows a function-based authorization system. If the user does not have the rights to
create (create), edit (edit), delete (delete) or print (print) a data record, he will not be displayed the
corresponding buttons and columns (see Figure 2).

<%@ taglib uri="/WEB-INF/tlds/cc-controls.tld" prefix="ctrl" %>

<ctrl:list
 id="list1"
 action="sample101/userBrowse"
 name="users"
 title="User List"
 width="500"
 rows="10"
 refreshButton="true"
 createButton="$create">

 <ctrl:columndrilldown title="Id" property="userId" width="65"/>
 <ctrl:columntext title="Name" property="name" width="350"/>
 <ctrl:columntext title="Role" property="role.name" width="150"/>
 <ctrl:columnedit title="Edit" permission="$edit"/>
 <ctrl:columndelete title="Delete" permission="$delete"/>

 <ctrl:columnbutton title="Print" property="print"

 permission="$print"
 image="app/images/imgPDF.gif"
 align="center"
 target="_blank"/>
</ctrl:list>

Figure 1: Configuration of rights for a control element

Figure 2: Display of ListControl with different authorizations

The figure on the left shows the list the way it is displayed to a user with the function rights to edit, delete,
print and create. The user on the right-hand page only has the function authorization print.

Introduction 1

Permissions and Security

2 Authorization types
The Framework distinguishes between the following authorizations:

�� StaticPermission
�� RoleBasedPermission
�� FunctionBasedPermission
�� Own implementations

2.1.1 StaticPermissions
A static authorization defines whether the user may carry out an action or not. In consequence, only the
values “true“ or “false” can be assigned as the variants.

Example: refreshButton=“true“

2.1.2 RoleBasedPermission
In the case of a role-based authorization, the execution of an action is linked to a role of the user. Thus, in
this manner, access to master data maintenance can be generally restricted to administrators.

A role-based authorization is marked by means of the “#” character.

Examples: #admin; #gast; #manager.

2.1.3 FunctionBasedPermission
In the case of a function-based authorization, the execution of an action is linked to a function. The user,
therefore, must have the right to carry out a special function. In the simplest case, this includes e.g. the
deletion, viewing, printing or addition of a data record.

Functions can thus be defined in a general form or also for individual sections within an application. Thus,
e.g., it is conceivable that a user may be able to insert data records in the persons table (User), but that he
does not have this right in the clients table (Client).

A function-based authorization is identified by the “$” character.

Examples: $user.edit; $user.create; $user.delete; $client.edit;

2.1.4 Own Implementations
Apart from the standard types, you can also realize your own authorization types.

2.1.5 Access Control List
Authorizations are always specified in the form of an Access Control List (ACL). What is involved here is a
semicolon-delimited list with individual authorizations. Various different authorization types can be used in a
list.

Example: $user.edit;#admin

If this list is then stored with authorizations within a ListControl on the edit-column, then, e.g. the column
can only be displayed if the user concerned is an Administrator or he has access to the function “user.edit”.

The assignment of rights to a user is then done in a database or a separate configuration file.

Authorization types 2

Permissions and Security

3 Implementation of an Authorization System
The following steps are required for using an authorization system in conjunction with the Common Controls
Framework:

1. Providing the principal object
2. Registration of the principal object
3. Linking to an authorization system
4. Configuration of authorizations within the control elements
5. Securing the action classes in the struts-config.xml

3.1 Providing the Principal Object
If an authorization check is to be carried out within the control elements, the application must make
available a Principal Object for the purpose. Only the Principal Interface is implemented for this
purpose. It extends an existing class with methods that are required for checking authorizations. This could
involve, as shown in the following examples, the user object, which is generated for a user at the time of
system login (in this context, under 3.3).

import com.cc.framework.security.Principal;
import com.cc.sample.config.SecurityConfig;
import com.cc.sample.security.UserRole;

/**
 * User-Objekt
 */
public class User implements Principal {

 private String userId = "";

 /**
 * Constructor
 * @param userId The UserId
 */
 public User(String userId) {
 super();

 this.userId = userId;
 }

 /**
 * @see com.cc.framework.security.Principal#hasRight(java.lang.String)
 */
 public boolean hasRight(String right) {
 // This methode is called if a function based permission
 // is checked
 // If the user can perform the action return true, false otherwise.
 }

 /**
 * @see com.cc.framework.security.Principal#isInRole(java.lang.String)
 */
 public boolean isInRole(String role) {
 // This methode is called if a role based permission
 // is checked
 // If the user is in role return true, false otherwise.
 }
}

CodeSnippet 1: User Objekt

Implementation of an Authorization System 3

Permissions and Security

3.2 Linking to an Authorization System
The linking to an authorization system takes place in the methods Principal#hasRight(String right) and
Principal#isInRol(String role) and is the job of the application. Here, e.g. access may be made to an LDAP
Server or a user database.

For example, the Online Demo 2 here uses a simple authorization system which can be configured by
means of XML-files and is sufficient for small applications.

Implementation of an Authorization System 4

Permissions and Security

3.3 Registration of the Principal Object
For the administration of the Principal Object, the class SecurityUtil provides the following methods:

Method Description
getPrincipal(...) Returns the principle object stored in the session.
registerPrincipal(...) Registers the principal object in the session under the key

Globals.PRINCIPAL_KEY.
unregisterPrincipal(...) Deletes the registered principal object from the session.
Tabelle 1: The class SecurityUtil

The following example code shows the registration of a user object as the principle object after the
authentication of the user.

import com.cc.framework.security.SecurityUtil;
import com.cc.framework.adapter.struts. FWAction ;
import com.cc.framework.adapter.struts.ActionContext;
import com.cc.framework.adapter.struts. FormActionContext;

public class LogonAction extends FWAction {

 public void doExecute(ActionContext ctx) throws IOException, ServletException {
 ctx.forwardToInput();
 }

 public void logon_onClick(FormActionContext ctx) {

 User user = new User(form.getUserId());
 user.load();

 // check if the user is authorized for this application

 // 2) register the user object as the principal object
 SecurityUtil.registerPrincipal(ctx.session(), user);

 }
}

CodeSnippet 2: Registration of the Principal Object

A registered principle object is de-registered by calling the static method unregisterPrincipal() (e.g.
when the user logs out).

SecurityUtil.unregisterPrincipal(ctx.session());

Implementation of an Authorization System 5

Permissions and Security

3.4 Configuration of Authorizations

3.4.1 Control Elements
For control elements, authorizations can be assigned at the following levels:

Control element
ListControl - Displaying or suppressing the control element itself

- Add-Button; displaying or suppressing
- Column, displaying or suppressing (for all types of columns)

tree - Displaying or suppressing the control element itself
No special mechanism is currently being offered at the level of the nodes. The
application itself must therefore ensure that the data model only contains nodes
that may be displayed to the user.

TreeListControl - Displaying or suppressing the control element itself
- Add-Button; displaying or suppressing
- Column, displaying or suppressing (for all types of columns)
No special mechanism is currently being offered at the level of the nodes. The
application itself must therefore ensure that the data model only contains nodes
that may be displayed to the user.

Tabset - Displaying or suppressing the control element itself
A tab of the tabset is disabled using the “enabled” attribute. If certain tabs are not
to be displayed, then at present, this must be ensured by the application itself.

MenuControl - Displaying or suppressing the control element itself
- Menu item, displaying or suppressing

3.4.2 Tags
Moreover, the Common Controls TagLibrary provides two additional tags, using which the execution of a
section in a JSP page can be controlled in an authorization-dependent manner.

�� <sec:granted>
�� <sec:notGranted>

The <granted> Tag lists the contents of the Tag body only if the registered principal object has the
required authorization.

<%@ taglib uri="/WEB-INF/tlds/cc-security.tld" prefix="sec" %>

<sec:granted permission="#admin;#developer">

 This User has the admin- or developer Role.

</sec:granted>

Implementation of an Authorization System 6

Permissions and Security

The <notGranted> Tag lists the contents of the Tag-body only when the registered principal object does
not have the required authorization.

<%@ taglib uri="/WEB-INF/tlds/cc-security.tld" prefix="sec" %>

<sec:notGranted permission="#admin;#developer">

 This User has not the admin- or developer Role.

</sec:notGranted>

Here, the function-based and role-based rights can also be mixed at will.

3.5 Securing the Action classes in the struts-config.xml
By default, the control elements generate hyperlinks which result in the execution of an action on the
server. The parameters required for this purpose are transferred in the URL within the request.

The following example shows this for the “Delete” column of a list.

Generated URL when deleting the data record with the Id = HOP:

http://localhost:8080/cc/listcontrol/sample101/userBrowse.do?ctrl=user&action=delete¶m=HOP

Such URLs can also be entered by unauthorized users in the address bar of the browser, and executed,
regardless of whether the user has an enabled Delete button or not. Therefore, the action that is triggered
with the hyperlink must itself be secured once again on the server side. Here, in the struts-config.xml
file, the roles-attribute is used for this purpose, to which a role-based or function-based right can be
assigned. The following extract from a struts-config.xml file shows how the authorization check is
expanded to cover the execution of an action class.

Example: Configuration of Authorizations

<struts-config>

 <action
 path="/sample101/userEdit"
 name="userEditForm"
 scope="request"
 validate="false"
 roles="$user.edit"
 type="com.cc.sample.list.sample101.action.UserEditAction"
 input="/../jsp/list/sample101/UserEdit.jsp">

Implementation of an Authorization System 7

Permissions and Security

 <forward name="back" path="/sample101/userBrowse.do" redirect="true"/>
 <forward name="success" path="/sample101/userBrowse.do" redirect="true"/>
 </action>

 <action
 path="/sample101/userCreate"
 name="userCreateForm"
 scope="request"
 validate="false"
 roles="$user.create"
 type="com.cc.sample.list.sample101.action.UserCreateAction"
 input="/../jsp/list/sample101/UserCreate.jsp">

 <forward name="back" path="/sample101/userBrowse.do" redirect="true"/>
 <forward name="success" path="/sample101/userBrowse.do" redirect="true"/>
 </action>

 <action
 path="/sample101/userDelete"
 roles="$user.delete"
 type="com.cc.sample.list.sample101.action.UserDeleteAction">

 <forward name="back" path="/sample101/userBrowse.do" redirect="true"/>
 </action>

 <action
 path="/sample101/userPrint"
 roles="$user.print"
 type="com.cc.sample.list.sample101.action.UserPrintAction">

 <forward name="back" path="/sample101/userBrowse.do" redirect="true"/>
 </action>

</struts-config>

In order that the configured rights can be checked against the registered principle object, in the struts-
config file, the following class must additionally be entered as a RequestProcessor

<struts-config>

 ...

 <!-- RequestProcessor -->
 <controller
 nocache="true"
 processorClass="com.cc.framework.adapter.struts.FWRequestProcessor"/>

 ...

</struts-config>

The FWRequestProcessor class is derived from the Struts RequestProcessor class and overwrites the
processRoles() method of the higher class, to facilitate the checking of the roles attributes with the help
of the registered principle object.

Implementation of an Authorization System 8

Permissions and Security

4 Examples
A detailed example of the configuration of authorizations and the use of the principal object is given in the
examples for the Online Demo 2.

Examples 9

Permissions and Security

5 Support
We would be happy to be of service if you have any questions or problems. Please use our Service Form
on our homepage for your queries. We shall endeavor to answer your queries as quickly as possible.

Support 10

Permissions and Security

6 Glossar
A
ACL
 Access Control List

C
CC
 Common-Controls

Glossar 11

	Introduction
	Authorization types
	
	StaticPermissions
	RoleBasedPermission
	FunctionBasedPermission
	Own Implementations
	Access Control List

	Implementation of an Authorization System
	Providing the Principal Object
	Linking to an Authorization System
	Registration of the Principal Object
	Configuration of Authorizations
	Control Elements
	Tags

	Securing the Action classes in the struts-config.xml

	Examples
	Support
	Glossar

