Common-Controls
Security

Version 1.0.2 - Stand: 24. December 2003

Commo
Controla

Common
Controla

Permissions and Security

Published by:
SCC Informationssysteme GmbH
64367 Muhltal

Tel: +49 (0) 6151/136 310
Internet www.scc-gmbh.com

Product Site
http://www.common-controls.com

Copyright © 2000 - 2003 SCC Informationssysteme GmbH.
All rights reserved. Published 2003

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way
without the prior agreement and written permission of SCC Informationssysteme GmbH.

Sun, Sun Mircosystems, the Sun Logo, Java, JavaServer Pages are registered trademarks of Sun
Microsystems Inc in the U.S.A. and other Countries.

Microsoft, Microsoft Windows or other Microsoft Produkie are a registered trademark of Microsoft
Corporation in the U.S.A. and other Countries.

Netscape, Netscape Navigator is a registered trademark of Netscape Communications Corp in the U.S.A.
and other Countries.

All other product names, marks, logos, and symbols may be trademarks or registered trademarks of their
respective owners.

Security ii

http://www.common-controls.com/

. e . Common
Permissions and Security Centrols

Table of content

1 o Lo 11 e 4 oY

2 AUhOKIZAtioN tYPEScciiiiiiiriiiei e ———

3 Implementation of an Authorization System ... ———————

3.1 Providing the Principal ODJECE........coo i e
3.2 Linking to an Authorization SYSTEMcoooiiiiii e
3.3 Registration of the Principal ODJECT.........oouiiiiii e
3.4 Configuration of AUthOFZAtIONScooiiiiii e
3.5 Securing the Action classes in the struts-config.Xml...........occoii

I o 11 1] . (==

Security

Permissions and Security

cC urrln'ln nl:

1 Introduction

This document describes how authorizations can be granted at the level of control elements, in order to
restrict program functions to certain groups of users only. For this purpose, a control element has a
per m ssi on-attribute, which allows assignment of the necessary authorizations (see Figure 1). The
authorizations can then be role-based or function-based. The various authorization types are shown in

Section 2.

The following example shows a function-based authorization system. If the user does not have the rights to
create (create), edit (edit), delete (delete) or print (print) a data record, he will not be displayed the

corresponding buttons and columns (see Figure 2).

<U@taglib uri="/WEB-INF/tlds/cc-controls.tld" prefix="ctrl" %

<ctrl:list
id="1Iist1"
acti on="sanpl €101/ user Br owse"
nane="users"
title="User List"
wi dt h="500"
rows="10"
refreshButton="true"
creat eButton="%create">

<ctrl:columdrilldown title="1d" property="userld"
<ctrl:col umtext title="Name" property="name"

<ctrl: col umt ext title="Rol e" property="rol e. nane"
<ctrl:col umedit title="Edit" perm ssion="$edi t"/>
<ctrl:col umdel et e title="Del ete" perm ssion="$del ete"/>
<ctrl:col umbutton title="Print" property="print"

per m ssi on="$print"

i mage:" app/ i mages/ i ngPDF. gi f "
align="center"

target="_bl ank"/>

</ctrl:list>

Figure 1: Configuration of rights for a control element

w dt h="65"/>
wi dt h="350"/>
w dt h="150"/>

User List - 1to 10 0f 18 User List - 1to 10 of 18

GS
BEK
ELK
GRM

Dreher, Friedhelm

Schimich, Gerhard
Becker, Klaus
Elbe, Karl

Gross, Michael

Administrator

Manasr
Guest
Guest
Cantraller

THRHRRRRRRNR

3036 % 3 3K K KKK

m:_mmm

e EE e

GE
BEK
ELK
GRM

Dreher, Friedhelm

Fas Faust, Steffan Guest FAS Faust, Steffan
FLG Fleige, Ginter Administrator FLG Fleige, Glnter
LD tiller, Dister Guest MLID hdiiller, Dister
KSE Selke, Karin Guest KSE Selke, Karin
ARK Arnhkeim, Katja Controller ARK Arnhein, Katja

Schimick, Gerhard
Becker, Klaus
Elbe, Karl

Gross, Michsel

Adminiztrator
Guest
Administrator
Guest

Guest
Cantrolier
Manzager
Guest

Guest
Contraller

AR

Figure 2: Display of ListControl with different authorizations

The figure on the left shows the list the way it is displayed to a user with the function rights to edit, delete,

print and create. The user on the right-hand page only has the function authorization print.

Introduction

. e . Common
Permissions and Security Centrols

2 Authorization types

The Framework distinguishes between the following authorizations:

StaticPermission
RoleBasedPermission
FunctionBasedPermission
Own implementations

2.1.1 StaticPermissions

A static authorization defines whether the user may carry out an action or not. In consequence, only the
values “true” or “false” can be assigned as the variants.

Example: refreshButton="true“

2.1.2 RoleBasedPermission

In the case of a role-based authorization, the execution of an action is linked to a role of the user. Thus, in
this manner, access to master data maintenance can be generally restricted to administrators.

A role-based authorization is marked by means of the “#” character.

Examples: #admin; #gast; #manager.

2.1.3 FunctionBasedPermission

In the case of a function-based authorization, the execution of an action is linked to a function. The user,
therefore, must have the right to carry out a special function. In the simplest case, this includes e.g. the
deletion, viewing, printing or addition of a data record.

Functions can thus be defined in a general form or also for individual sections within an application. Thus,
e.g., it is conceivable that a user may be able to insert data records in the persons table (User), but that he
does not have this right in the clients table (Client).

A function-based authorization is identified by the “$” character.

Examples: $user.edit; $user.create; $user.delete; $client.edit;

2.1.4 Own Implementations

Apart from the standard types, you can also realize your own authorization types.

2.1.5 Access Control List

Authorizations are always specified in the form of an Access Control List (ACL). What is involved here is a
semicolon-delimited list with individual authorizations. Various different authorization types can be used in a
list.

Example: $user.edit;#admin

If this list is then stored with authorizations within a ListControl on the edit-column, then, e.g. the column
can only be displayed if the user concerned is an Administrator or he has access to the function “user.edit”.

The assignment of rights to a user is then done in a database or a separate configuration file.

Authorization types 2

. e . Common
Permissions and Security Centrols

3 Implementation of an Authorization System

The following steps are required for using an authorization system in conjunction with the Common Controls
Framework:

Providing the principal object

Registration of the principal object

Linking to an authorization system

Configuration of authorizations within the control elements
Securing the action classes in the struts-config.xml

g~

3.1 Providing the Principal Object

If an authorization check is to be carried out within the control elements, the application must make
available a Pri nci pal Obj ect for the purpose. Only the Principal Interface is implemented for this
purpose. It extends an existing class with methods that are required for checking authorizations. This could
involve, as shown in the following examples, the user object, which is generated for a user at the time of
system login (in this context, under 3.3).

i mport com cc. franewor k. security. Principal ;
i mport com cc. sanpl e. confi g. SecurityConfig;
i nport com cc. sanpl e. security. UserRol g;

/**

* User - Obj ekt
*/
public class User inplenments Principal {

private String userld = "";

/**
* Constructor
* userld The Userld
*/
public User(String userld) {
super ();
this.userld = userld;
}
/**
* com cc. framewor k. security. Princi pal #hasRi ght (j ava. | ang. Stri ng)
*/

publ i ¢ bool ean hasRight(String right) {
/] This nethode is called if a function based perm ssion
/'l is checked
/1 |If the user can performthe action return true, false otherw se.

}

/**
*

com cc. framewor k. security. Princi pal #i sl nRol e(j ava. | ang. Stri ng)
*/

publi ¢ bool ean islnRole(String role)

/1 This nmethode is called if a role based pernission

/'l is checked

// 1If the user is inrole return true, false otherw se.

}

CodeSnippet 1: User Objekt

Implementation of an Authorization System 3

. e . Common
Permissions and Security Centrols

3.2 Linking to an Authorization System

The linking to an authorization system takes place in the methods Principal#hasRight(String right) and
Principal#isIinRol(String role) and is the job of the application. Here, e.g. access may be made to an LDAP
Server or a user database.

For example, the Online Demo 2 here uses a simple authorization system which can be configured by
means of XML-files and is sufficient for small applications.

Implementation of an Authorization System 4

Common
Controla

Permissions and Security

3.3 Registration of the Principal Object

For the administration of the Principal Object, the class SecurityUtil provides the following methods:

Method Description
getPrincipal (...) Returns the principle object stored in the session.
registerPrincipal (...) Registers the principal object in the session under the key

Globals.PRINCIPAL KEY.

unregisterPrincipal (...) Deletes the registered principal object from the session.

Tabelle 1: The class SecurityUtil

The following example code shows the registration of a user object as the principle object after the
authentication of the user.

i nport com cc. franewor k. security. SecurityUtil;
i mport com cc. franewor k. adapter. struts. FWAction ;
i mport com cc. framewor k. adapt er. struts. Acti onCont ext ;
i mport com cc. franmewor k. adapt er. struts. FormActi onCont ext;
public class LogonAction extends FWAction {
public void doExecute(Acti onContext ctx) throws | OException, ServletException {
ct x. forwardTol nput () ;
}

public void | ogon_ond i ck(FornmActi onCont ext ctx) ({

User user = new User(formgetUserld());
user. |l oad();

/1 check if the user is authorized for this application

[l 2) register the user object as the principal object
SecurityUtil.registerPrincipal (ctx.session(), user);

}

CodeSnippet 2: Registration of the Principal Object

A registered principle object is de-registered by calling the static method unregisterPrincipal () (e.g.
when the user logs out).

SecurityUtil.unregisterPrincipal (ctx.session());

Implementation of an Authorization System 5

Common
Controla

Permissions and Security

3.4 Configuration of Authorizations

3.4.1 Control Elements

For control elements, authorizations can be assigned at the following levels:

Control element

ListControl - Displaying or suppressing the control element itself
- Add-Button; displaying or suppressing
- Column, displaying or suppressing (for all types of columns)

tree - Displaying or suppressing the control element itself

No special mechanism is currently being offered at the level of the nodes. The
application itself must therefore ensure that the data model only contains nodes
that may be displayed to the user.

TreeListControl - Displaying or suppressing the control element itself
- Add-Button; displaying or suppressing
- Column, displaying or suppressing (for all types of columns)

No special mechanism is currently being offered at the level of the nodes. The
application itself must therefore ensure that the data model only contains nodes
that may be displayed to the user.

Tabset - Displaying or suppressing the control element itself

A tab of the tabset is disabled using the “enabled” attribute. If certain tabs are not
to be displayed, then at present, this must be ensured by the application itself.

MenuControl - Displaying or suppressing the control element itself

- Menu item, displaying or suppressing

3.4.2 Tags

Moreover, the Common Controls TagLibrary provides two additional tags, using which the execution of a
section in a JSP page can be controlled in an authorization-dependent manner.

e <sec:granted>
e <sec:notGranted>

The <gr ant ed> Tag lists the contents of the Tag body only if the registered principal object has the
required authorization.

<U@taglib uri="/WEB-INF/tlds/cc-security.tld" prefix="sec" %
<sec: granted pern ssi on="#adni n; #devel oper" >

This User has the admi n- or devel oper Role.
</ sec: grant ed>

Implementation of an Authorization System 6

Common
Controla

Permissions and Security

The <not Gr ant ed> Tag lists the contents of the Tag-body only when the registered principal object does
not have the required authorization.

<U@taglib uri="/WEB-INF/tlds/cc-security.tld" prefix="sec" %

<sec: not Grant ed perm ssi on="#adm n; #devel oper" >
This User has not the adnmin- or devel oper Role.
</ sec: not Gr ant ed>

Here, the function-based and role-based rights can also be mixed at will.

3.5 Securing the Action classes in the struts-config.xml

By default, the control elements generate hyperlinks which result in the execution of an action on the
server. The parameters required for this purpose are transferred in the URL within the request.

The following example shows this for the “Delete” column of a list.

User List - 1to100f 19

HOP Hoos, Dieter Administrator E’ i | '@
DRF Dreher, Frigdhelm Prociuct Manacier E’ E '@
Fas Faust, Steffan Guest i &= el
FLiZ Fleige, Glnter Administrator E’ i | '@
hALID Milller, Digter Guest E’ E '@
KSE Selke, Karin Guest rig &= el
ARK Arnheim, Katja Controller E’ i | '@
G5 Schmict, Gerhard hanaer ﬁ E '@
BEK Becker, Klaus Guest rig = T
ELK Elbe, Katl Guest & = et

Generated URL when deleting the data record with the Id = HOP:

http://localhost:8080/cc/listcontrol/sample101/userBrowse.do?ctri=user&action=delete¶m=HOP

Such URLs can also be entered by unauthorized users in the address bar of the browser, and executed,
regardless of whether the user has an enabled Delete button or not. Therefore, the action that is triggered
with the hyperlink must itself be secured once again on the server side. Here, in the st rut s- confi g. xm
file, the r ol es-attribute is used for this purpose, to which a role-based or function-based right can be
assigned. The following extract from a struts-config. xnl file shows how the authorization check is
expanded to cover the execution of an action class.

Example: Configuration of Authorizations

<struts-config>

<action
pat h="/sanpl e101/ user Edi t "
nane="user Edi t For n{
scope="request"
val i dat e="f al se"
rol es="$user.edit"
type="com cc. sanpl e. | i st. sanpl el01. acti on. User Edi t Acti on"
input="/../jsp/list/sanplel0l/ UserEdit.jsp">

Implementation of an Authorization System 7

Common

Permissions and Security Centrola
<f orward nane="back" pat h="/sanpl e101/ user Br owse. do" redirect="true"/>
<forward name="success" path="/sanpl €101/ userBrowse. do" redirect="true"/>

</ action>
<action

pat h="/sanpl el01/ user Cr eat e"

nane="user Cr eat eFor nt

scope="request "

val i dat e="f al se"

rol es="$user. create"

type="com cc. sanpl e.list.sanpl el01. acti on. User Cr eat eActi on"
input="/../jsp/list/sanpl el01/ UserCreate.|sp">

<f orward nane="back" pat h="/sanpl el01/ user Browse. do" redirect="true"/>
<forward nane="success" path="/sanpl €101/ userBrowse. do" redirect="true"/>
</ action>
<action

pat h="/sanpl e101/ user Del et e"
rol es="3$user. del et e"
type="com cc. sanpl e.list.sanpl el01. acti on. User Del et eActi on" >

<f orward nane="back" path="/sanpl el01/ user Browse. do" redirect="true"/>
</ action>

<action
pat h="/sanpl e1l01/ userPrint"
rol es="$user.print"
type="com cc. sanpl e. |l i st.sanpl el0l1. acti on. UserPri nt Acti on">

<f orward nane="back" path="/sanpl el01/ user Browse. do" redirect="true"/>
</ action>

</ struts-config>

In order that the configured rights can be checked against the registered principle object, in the st r ut s-
confi g file, the following class must additionally be entered as a RequestProcessor

<struts-config>

<!-- Request Processor -->
<control |l er
nocache="true"
processor d ass="com cc. f ramewor k. adapt er. st rut s. FARequest Processor "/ >

</ struts-config>

The FWRequestProcessor class is derived from the Struts RequestProcessor class and overwrites the
processRoles() method of the higher class, to facilitate the checking of the r ol es attributes with the help
of the registered principle object.

Implementation of an Authorization System 8

. e . Common
Permissions and Security Centrols

4 Examples

A detailed example of the configuration of authorizations and the use of the principal object is given in the
examples for the Online Demo 2.

Examples 9

. e . Common
Permissions and Security Centrols

S Support

We would be happy to be of service if you have any questions or problems. Please use our Service Form
on our homepage for your queries. We shall endeavor to answer your queries as quickly as possible.

Support 10

Common

Permissions and Security Centrols
6 Glossar
A
ACL

Access Control List

C

CcC
Common-Controls

Glossar

	Introduction
	Authorization types
	
	StaticPermissions
	RoleBasedPermission
	FunctionBasedPermission
	Own Implementations
	Access Control List

	Implementation of an Authorization System
	Providing the Principal Object
	Linking to an Authorization System
	Registration of the Principal Object
	Configuration of Authorizations
	Control Elements
	Tags

	Securing the Action classes in the struts-config.xml

	Examples
	Support
	Glossar

