

Common-Controls
Guided Tour
TreeListControl

Version 1.0.3 - Last changed: 01. August 2004

Guided Tour TreeListControl

Herausgeber:
SCC Informationssysteme GmbH
64367 Mühltal

Tel: +49 (0) 6151 / 13 6 31 0
Internet www.scc-gmbh.com

Product Site:
www.common-controls.com

Copyright © 2000 - 2003 SCC Informationssysteme GmbH.
All rights reserved. Published 2003

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way
without the prior agreement and written permission of SCC Informationssysteme GmbH.

Java�, JavaServer Pages� are registered trademarks of Sun Microsystems

Windows® is a registered trademark of Microsoft Corporation.

Netscape� is a registered trademark of Netscape Communications Corp.

All other product names, marks, logos, and symbols may be trademarks or registered trademarks of their
respective owners.

GuidedTour TreeListControl ii

Guided Tour TreeListControl

Table of contents
1 Guided Tour TreeListControl ..1
1.1 Object ...1
1.2 Registration of the Painterfactory...2
1.3 Derivation of the action class ...2
1.4 Instancing of the TreeListControl ...3
1.5 Provision of the display data ..4
1.6 Configuration of the TreeControls within the JSP-Page ..5
1.7 Tour End...6
1.8 Exkurs: Implementation of Callback methods..7
1.9 Alternative Layouts...8

2 Glossary ..9

GuidedTour TreeListControl iii

Guided Tour TreeListControl

1 Guided Tour TreeListControl

1.1 Object
This exercise demonstrates the use of the TreeListControls. It combines a tree with a list, whose nodes can
be opened and closed. For this, the programmer merely provides the display data (of the data model) by
the implementation of a simple interface.

The TreeListControl offers the following features:

�� The lines at the uppermost level can be displayed or hidden. Different images can be stored in an
ImageMap for the nodes and the leaves. The assignment of the images to the relevant tree nodes
takes place with the help of regular expressions.

�� The control element independently administers all the necessary status data across several Server
Roundtrips. This includes, for example, the exploded or closed status of a tree node.

�� Check boxes can be displayed or hidden before the tree entries. When selecting a node at a lower
level, all the higher-level nodes are selected automatically.

The following steps are required for using the TreeListControl:
- Selection of the layout for the user interface.
- Derivation of an action class.
- Instancing of a TreeListControl.
- Provision of display data.
- Configuration of the control element within the JSP-Page.

Guided Tour TreeListControl 1

Guided Tour TreeListControl

1.2 Registration of the Painterfactory
The registration of the Painterfactory takes place first. It defines which design the user interface will get.
This can be done across the application in the init()-method of the Frontcontroler-Servlet.1 Here, we select
the standard design that the DefaultPainter offers us.2

import javax.servlet.ServletException

import org.apache.struts.action.ActionServlet;
import com.cc.framework.ui.painter.PainterFactory
import com.cc.framework.ui.painter.def.DefPainterFactory;
import com.cc.framework.ui.painter.html.HtmlPainterFactory;

public class MyFrontController extends ActionServlet {

 public void init() throws ServletException {

 super.init();

 // Register all Painter Factories with the preferred GUI-Design
 // In this case we use the Default-Design.

PainterFactory.registerApplicationPainter (
getServletContext (), DefPainterFactory.instance());

PainterFactory.registerApplicationPainter (
getServletContext (), HtmlPainterFactory.instance());

 }
}

1.3 Derivation of the action class
In our TreeListControl, we want to display regions and Federal states. Therefore, the action class which
takes care of the loading and filling of the TreeListControl must have the nomenclature
"RegionBrowseAction".

The action class is then derived from the class FWAction, which encapsulates the Struts-action class and
extends with functionalities of the presentation framework. Instead of the execute()-method, the
doExecute()-method is called. [FWAction is derived from org.apache.struts.Action]. On calling, it contains
the ActionContext, through which the access to additional objects such as the Request- and Response-
object is capsulated

import java.io.IOException;
import javax.servlet.ServletException;

import com.cc.framework.adapter.struts.FWAction;
import com.cc.framework.adapter.struts.ActionContext;

public class RegionBrowseAction extends FWAction {

 /**
 * @see com.cc.framework.adapter.struts.FWAction#doExecute(ActionContext)
 */
 public void doExecute(ActionContext ctx)
 throws IOException, ServletException {
 // In the next chapter, we will instantiate
 // our TreeListControls with the DisplayData
 }
}

1 If it has to be possible for the individual user to choose between different interface designs, then additional PainterFactorys are
registered in the user session. This is done mostly in the LoginAction with PainterFactory.registerSessionPainter() in the session
Scope.

Guided Tour TreeListControl 2

2 Additional designs (PainterFactories) are included in the kit of the Professional Edition, or you can develop them yourself.

Guided Tour TreeListControl

1.4 Instancing of the TreeListControl
Now, the TreeListControl is instanced within our action and filled with the display data. The data model is
assigned to the control element through the setDataModel()-method. The method takes, as the argument,
an object of type TreeGroupDataModel . What this involves is an interface which provides access to the
display data of the tree. It is the job of the application developer to provide a corresponding implementation.

import java.io.IOException;
import javax.servlet.ServletException;

import com.cc.framework.adapter.struts.ActionContext;
import com.cc.framework.adapter.struts.FWAction;
import com.cc.framework.ui.control.TreeListControl;

public class RegionBrowseAction extends FWAction {

 /**
 * @see com.cc.framework.adapter.struts.FWAction#doExecute(ActionContext)
 */
 public void doExecute(ActionContext ctx)
 throws IOException, ServletException {

 try {
 // first get the Displaydata for our TreeList
 RegionGroupDsp dspData = DBRegion.fetchDspOutline();

 // Create the TreeListControl an populate it
 // withe the Data to display
 TreelistControl regionList = new TreelistControl();
 regionList.setDataModel(dspData);

 // third put the TreeListControl into the Session-Object.
 // Our TreeListControl is a statefull Object.
 // Normaly you can use an Objectmanager or an other
 // workflow Component that manage the Livecyle of the Object
 ctx.session().setAttribute("regions", regionList);
 }

 catch (Throwable t) {
 ctx.addGlobalError("Error: ", t);
 }

 // Display the Page with the TreeList
 ctx.forwardToInput();
 }
}

Guided Tour TreeListControl 3

Guided Tour TreeListControl

1.5 Provision of the display data
The tree consists of group and leaf nodes. Group nodes can, in turn have additional nodes (composite
pattern). Accordingly, for both the node types, the interfaces TreeGroupDataModel and
TreeNodeDataModel are available (TreeGroupDataModel extendsTreeNodeDatamodel). With their help,
the tree structure can be easily generated.

In doing so, the root node is generated first and under it, additional groups or leaves are suspended. The
root node is passed onto the TreeControl as a data model.

The procedure corresponds to the provision of display data for the TreeControl. In contrast to the
TreeControl, however, the TreeListControl should present additional columns. To do so, our Bean, which
provides the display data, must merely implement additional properties for the corresponding columns. In
our example, what is involved is the class RegionDsp, from which group and leaf nodes are derived.

A detailed code example will be provided to you with the trial version, which you can download free of cost.

Guided Tour TreeListControl 4

Guided Tour TreeListControl

1.6 Configuration of the TreeControls within the JSP-Page
In order to use the TreeListControl-tag on a JSP page, the corresponding tag library must be declared at
the start of the page. Then, the Common-Controls can be referenced with the prefix <ctrl:tagname />. [In
addition, the tag libraries must be included in the Deployment descriptor, the WEB-INF/web.xml file]

<%@ taglib uri="/WEB-INF/tlds/cc-controls.tld" prefix="ctrl" %>

<ctrl:treelist
 id="tl1"
 name="regions"
 action="sample301/regionBrowse"
 title="Regions Structure"
 rows="15"
 refreshButton="true"
 expandMode="multiple"
 root="true">

 <ctrl:columntree
 title="Region"
 property="region"
 width="180"
 imageProperty="type"/>

 <ctrl:columntext
 title="Name"
 property="name"
 width="250"/>

 <ctrl:columnadd
 title="Add"
 property="add"/>

 <ctrl:columnedit
 title="Edit"
 property="editable"/>

 <ctrl:columndelete
 title="Delete"
 property="editable"/>
</ctrl:treelist>

Since we have saved the TreeListControl in the session, the name of the Bean is specified via the Name
attribute. In addition, with the action attribute, that action is specified to which actions from our
TreeListControl (onEdit, onDelete, etc...) are delegated.

If the TreeListControl is saved in a FormBean, it is enough to specify the property attribute. In this case, the
scope of the Formbean must be set to "session", so that the control element can retain its state across
server roundtrips.

When using a workflow control, the control element can be generated with other components and later
deleted from the session.

All the necessary steps for using the TreeListControls are thus commplete. The opening and closing
behavior does not have to be self-implemented. It is administered by the control element itself. For
navigation, the control element provides scrolling buttons which are enabled as soon as the specified
number of lines is exceeded.

Guided Tour TreeListControl 5

Guided Tour TreeListControl

1.7 Tour End
The TreeListControl can be easily and quickly integrated. Its standard behavior can also be overwritten if
required. Thus, it is also possible to generate special TreeListList objects, which already encapsulate the
access to certain technical data and can be repeatedly used within an application project.

Thanks to the configuration options in the JSP-Page, the behavior of the TreeListControls can be changed
quickly. Alternative designs can be easily integrated by customizing the existing Painter. Parallel support to
different designs is also possible. The programmer can concentrate on the technical sequences and on
providing the display data.

Features of the TreeListControl:

�� Implements automatic exploding and closing of nodes.
�� Administers the state of optional checkboxes.
�� Different configuration options (display/hiding of the root node, opening and closing behavior is

modiable, connecting lines can be suppressed at the highest level).
�� Data below a group node can also be loaded only when the group is opened. The tree does not have to

be fully known right from the beginning. This is e.g. very helpful in conjunction with databases. When a
node with an unknown number of children is first exploded, an onExpandEx event is sent to the
application.

�� Design of the TreeListControl can be defined in the JSP or also on the server side!
�� Maps actions that are carried out on the tree to CallBack methods in the action class (Examples:

onCheck, onExpand, onCollapse, onExpandEx).
�� Images from the nodes/leaves assignable with regular expressions.
�� Authorization check at node level. Nodes can thus be automatically suppressed for unauthorized users.

(see Scurity Documentation).
�� Design can be customized with Painterfactory to own StyleGuide (Corporate Identity).
�� Optimized HTML-Code.
�� The same Look-and-Feel in Microsoft InternetExplorer > 5.x and Netscape Navigator > 7.x

Guided Tour TreeListControl 6

Guided Tour TreeListControl

1.8 Exkurs: Implementation of Callback methods
The TreeListControl automatically generates an onDrilldown-Event on clicking on a label, to which the
programmer can react within the action class.

To react to this event in our example, we include a corresponding Callback method in the
RegionBrowseAction. Since we do not wish to implement the business logic here, we forward the event to
another action - RegionDisplayAction.

import java.io.IOException;
import javax.servlet.ServletException;

import com.cc.framework.adapter.struts.ActionContext;
import com.cc.framework.adapter.struts.FWAction;
import com.cc.framework.ui.control.TreeListControl;

public class RegionBrowseAction extends FWAction {

 /**
 * @see com.cc.framework.adapter.struts.FWAction#doExecute(ActionContext)
 */
 public void doExecute(ActionContext ctx)
 throws IOException, ServletException {

 try {
 RegionGroupDsp dspData = DBRegion.fetchDspOutline();

 TreelistControl regionList = new TreelistControl();
 regionList.setDataModel(dspData);

 ctx.session().setAttribute("regions", regionList);
 }

 catch (Throwable t) {
 ctx.addGlobalError("Error: ", t);
 }

 // Display the Page with the TreeList
 ctx.forwardToInput();
 }

 // --
 // event handler

// --

 /**
 * This Method is called when the TreeLabel is clicked
 * In our Example we switch to the DetailView, which shows
 * more Information about the node.
 * @param ctx ControlActionContext
 * @param key UniqueKey, as created in the Datamodel
 */
 public void regions_onDrilldown(ControlActionContext ctx, String key) {
 ctx.forwardByName(Forwards.DRILLDOWN, key);
 }

}

The name of the CallBack method is composed of the property name of the TreeListControls - the name of
the Bean - and the event that has occurred. Since the TreeListControl was stored under the name "region"
in the session, the name of the CallBack-method is regions_onDrilldown.

Guided Tour TreeListControl 7

Guided Tour TreeListControl

1.9 Alternative Layouts
Other layouts can be generated by means of the implementation and registration of own Painterfactorys.
Here are a few examples from application projects.

Figure 1: Example Layout 1

Figure 2: Example Layout 2

Guided Tour TreeListControl 8

Guided Tour TreeListControl

2 Glossary
C
CC
 Common-Controls

Glossary 9

	Guided Tour TreeListControl
	Object
	Registration of the Painterfactory
	Derivation of the action class
	Instancing of the TreeListControl
	Provision of the display data
	Configuration of the TreeControls within the JSP-Page
	Tour End
	Exkurs: Implementation of Callback methods
	Alternative Layouts

	Glossary

